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into its gravity dual, known as the Polchinski-Strassler background. The non-vanishing 3-

form flux G3 in the background is dual to mass terms for the three adjoint chiral superfields,

deforming the N = 4 SYM theory to the N = 1⋆ SYM theory. We keep its three mass

parameters independent. This generalizes our analysis in hep-th/0610276 for the N = 2⋆

SYM theory. We work at second order in the mass perturbation, i.e. G3 and its backreaction

on the background are considered perturbatively up to this order. We find analytic solutions

for the embeddings which in general depend also on angular variables. We discuss the

properties of the solutions and give error estimates on our approximation. By applying the

method of holographic renormalization, we show that in all cases the embeddings are at

least consistent with supersymmetry.
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1. Introduction

The AdS/CFT correspondence [1] allows us to study N = 4 supersymmetric Yang-Mills

(SYM) theory with gauge group SU(N) in the large N limit and at large ’t Hooft cou-

pling constant λ = g2
YMN by analyzing its conjectured gravity dual, given by type II B

supergravity in AdS5 × S5 with N units of Ramond-Ramond 5-form flux.

The correspondence has been extended to cases in which the dual gauge theory is

not maximally supersymmetric and conformal, but preserves less supersymmetries and is

confining. Several backgrounds for the dual gravity description of such gauge theories have

been proposed e.g. in [2 – 4] and in [5], which is the ten-dimensional uplift of a monopole-like

solution found in [6, 7].
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A particularly interesting example for a supergravity background was discussed by

Polchinski and Strassler [8]. It is based on the observation that from the N = 4 SYM

theory one can obtain a confining gauge theory with less supersymmetry by adding mass

terms for the three adjoint chiral N = 1 supermultiplets. In the dual gravity description

this mass perturbation corresponds to certain non-vanishing 3-form flux components. In

the underlying brane picture this flux polarizes the background-generating D3-branes due

to the Myers effect [9] into their transverse directions in which they extend to rotational

ellipsoids [10]. The full effective description of the brane configuration is not known.

The Polchinski-Strassler background which should be obtained as its near horizon limit

therefore is not given in a closed form. At sufficiently large distance from the extended D3-

brane sources the near horizon limit of the configuration is given as perturbative expansion

around AdS5 × S5. The 3-form flux is considered as a perturbation. Its backreaction on

the geometry corrects the background order by order in the mass parameters [8, 11, 12].

Generically the dual gauge theory is the so called N = 1∗ theory. Its special case when

all three masses are identical has been discussed by Polchinski and Strassler [8]. If instead

two masses are identical and non-vanishing, while the third one is zero, the theory is the

N = 2∗ theory. By introducing a fourth mass for the gravitino into the N = 1∗ theory,

supersymmetry can be completely broken. This case has been addressed in [13].

All the fields in the above mentioned gauge theories transform in the adjoint repre-

sentation of the gauge group. To approach a dual gravity description of QCD we should

extend the field content by adding fields that transform in the fundamental representation

(henceforth denoted as quarks). It was proposed by Karch and Katz [14] that N = 4

SYM can be endowed with Nf quark flavours by embedding Nf spacetime-filling D7-branes

into AdS5 × S5. In the brane picture, the Nf quark flavours correspond to open strings

that connect the stack of N D3-branes with the Nf D7-branes. Taking the near horizon

limit to obtain the gravity background for the correspondence, the gauge symmetry on the

D7-branes becomes the global flavour symmetry. The choice Nf ≪ N thereby allows one to

neglect the backreaction of the D7-branes on the background, considering them as brane

probes. Each D7-brane probe spans an AdS5×S3 inside AdS5×S5. It fills all of AdS5 down

to a minimal value r = û of the radial coordinate r, at which it terminates. Since r has

the interpretation of an energy scale with small and large r corresponding to the IR and

UV regimes in the dual gauge theory, the value r = û is related to the quark mass mq via

mq = 1
2πα′ û. The termination of the D7-brane at r < u means that at energies E < mq the

corresponding quark degree of freedom freezes out. Furthermore, the fluctuations of the

D7-brane embedding coordinates around the found solution determine the meson spectrum

in the dual gauge theory [15].

In the context of the AdS/CFT correspondence the embeddings of Dp-brane probes

into various supergravity backgrounds have been studied extensively in the literature [16 –

28]. Analyses beyond the probe approximation have also been performed [18, 29 – 34].

Embeddings of Dp-branes in backgrounds with flux have been treated in [35 – 37, 10].

To add flavour to the mass perturbed N = 1⋆ and N = 2⋆ theories, we study in

this paper the embedding of D7-brane probes into the order O(m2) Polchinski-Strassler

background with generic mass parameters. This generalizes our analysis in [10] in which
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we restricted ourselves to two specific embeddings in the N = 2 background. In the generic

case the presence of anti-selfdual source terms in the equation of motion for F disposes us

to revisit the solution and also the treatment of the gauge field in [10]. Before studying the

embedding coordinates themselves, we introduce additional parameters into the underlying

action which allow us to reproduce the results of [10] even after modifying the treatment

of F . Furthermore, we can directly see how the individual contributions to the action

influence the behaviour of the embeddings.

The paper is organized as follows. In section 2 we review in brief the Polchinski-

Strassler background with arbitrary mass parameters up to order O(m2). In section 3 we

present the expanded generalized form of the D7-brane action on which the whole analysis

is based. In section 4 we revisit the equation of motion for the D7-brane worldvolume gauge

field and its solution. In section 5 we evaluate the action for the expanded embeddings

and discuss the resulting equations of motion and their general regular solutions. We also

revisit the case of [10] with our new treatment of the gauge field and analyze additional

embeddings in the N = 2 and in the N = 1 background with three equal masses in

more detail. Moreover, we give error estimates for the analytic solutions. In section 6

we apply the method of holographic renormalization [38 – 40] to the on-shell action of

arbitrary D7-brane embeddings in the generalized background and show that in all cases the

subtracted action can be made vanish by adding appropriate finite counterterms. Various

detailed computations that include the generalization of the background to arbitrary mass

parameters, the derivation of the explicit form of the equations of motion and of the action

as well as the derivation of their solutions can be found in a series of appendices.

2. Polchinski-Strassler background to order O(m2)

In the following we work in the regime in which the Polchinski-Strassler background [8] can

be described as a perturbative expansion around AdS5×S5. The corrections are determined

by the backreaction of the 3-form flux on the geometry. In the Einstein frame of [8, 10]

the unperturbed metric of AdS5 × S5 reads

d s2 = Z− 1

2 ηµν d xµ dxν + Z
1

2 δij d yi d yj ,

Z(r) =
R4

r4
, r2 = yiyi , R4 = 4πgsNα′2 ,

(2.1)

where µ, ν = 0, 1, 2, 3 and i, j = 4, . . . , 9. The radius R depends on the string coupling

constant gs and on the number N of D3-branes which in the near horizon limit gener-

ate the AdS5 × S5 background. The unperturbed background also contains the complex

combination of the axion and dilaton and the 4-form potential which are defined as

τ̂ = Ĉ0 + i e−φ̂ = const. , Ĉ0123 = e−φ̂ Z−1 , (2.2)

where in the following a ‘hat’ always denotes an unperturbed quantity. The unperturbed

dilaton is related to the string coupling constant as eφ̂ = gs.
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Polchinski and Strassler [8] have considered a perturbation in the form of a non-

vanishing 3-form flux G3 given by

G3 = F̃3 − τ̂H3 = e−φ̂ ζ

3
d(ZS2) , (2.3)

where F̃3 and H3 are the 3-form field strengths, which are respectively obtained from the

potentials

C̃2 = C2 − Ĉ0B = e−φ̂ ζ

3
Z Re S2 , B = −ζ

3
Z Im S2 . (2.4)

The constant ζ assumes the value ζ = −3
√

2 in a proper normalization scheme [8]. The

2-form S2 has the component expression

S2 =
1

2
Tijky

i d yj ∧ d yk , (2.5)

where the 3-tensor T3 is imaginary anti-selfdual (IASD), i.e. it fulfills

(⋆6 + i)T3 = 0 . (2.6)

Thereby ⋆6 is the Hodge star operator in flat space with components in the directions yi

of (2.1).

To present the explicit form of T3 it is advantageous to work in a basis of three complex

coordinates zp and their complex conjugates z̄p for the transverse directions yi. It is defined

as

zp =
1√
2
(yp+3 + iyp+6) , p = 1, 2, 3 . (2.7)

The components of the tensor T3 then read

Tpqr = Tp̄q̄r̄ = Tp̄qr = 0 , Tpq̄r̄ = ǫpqrmp , (2.8)

where in the dual gauge theory the three parameters mp are the masses of the three adjoint

chiral N = 1 multiplets Φp of N = 4 SYM. To be more precise, the G3 perturbation (2.3)

is dual to a deformation of N = 4 SYM by a mass-term superpotential

∆W =
1

g2
YM

(m1 tr Φ2
1 + m2 tr Φ2

2 + m3 tr Φ2
3) , (2.9)

where g2
YM = 4πgs. For generic masses the theory is N = 1 supersymmetric, while for one

mass vanishing and the other two being equal it preserves N = 2 supersymmetries.

The mass perturbation (2.3) backreacts on the geometry. Up to linear order in the

masses only 6-form potentials [8] are induced. At quadratic order in the masses, the

metric and 4-form potential [11] as well as the complex axion-dilaton [8, 11, 12] acquire

corrections.1 Furthermore, a non-vanishing 8-form RR potential C8 is induced [10]. The

linear combination (2.3) still contains only the constant unperturbed τ̂ , which changes at

order O(m3), at which a component G(3,0) is generated that is dual to a non-vanishing

gaugino condensate [12].

1See [10] for remarks about some typos in the original papers.
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The deformations at quadratic order of the metric, C4 and τ have been computed

in [11] with an appropriate gauge choice. At this order, the deformed metric reads

d s2 = (Z− 1

2 + h0)ηµν dxµ d xν +

[

(5Z
1

2 + p)Iij + (Z
1

2 + q)
yiyj

r2
+ wWij

]

d yi d yj , (2.10)

where the tensors Iij and Wij are given by

Iij =
1

5

(

δij −
yiyj

r2

)

, Wij =
1

|T3|2
Re(TipkT̄jpl)

ykyl

r2
− Iij , |T3|2 =

1

3!
TijkT̄ijk .

(2.11)

It is important to remark that our definition of |T3|2 deviates from the one in [11] by an

extra factor 1
3! , such that we have the relation

|T3|2 = m2
1 + m2

2 + m2
3 = M2 . (2.12)

The functions h, w, p, q are given by [11]

w = −ζ2M2R2

18
Z , p = −ζ2M2R2

48
Z , q =

ζ2M2R2

1296
Z , h0 =

7ζ2M2R2

1296
,

(2.13)

and they satisfy

4h0Z = q − p . (2.14)

The correction to the dilaton φ̃ = ϕY+ is given as a product of a purely radial dependent

part ϕ and an SO(6) spherical harmonic Y+, which explicitly read

ϕ =
ζ2M2R2

108
Z

1

2 ,

Y+ =
3

M2r2

(

m2m3(y
2
4 − y2

7) + m1m3(y
2
5 − y2

8) + m1m2(y
2
6 − y2

9)
)

.

(2.15)

The (backreacted) forms to order O(m2) relevant here are given by the 2-form poten-

tials (2.4) and by

C4 = e−φ̂

(

Z−1 +
ζ2M2R2

3423
Z− 1

2

)

d vol(R1,3) +
1

2
B ∧ C2 ,

C6 =
2

3
B ∧ Ĉ4 ,

C8 = −1

6

(

e2φ̂ C̃2 ∧ C̃2 + B ∧ B
)

∧ Ĉ4 ,

(2.16)

where again Ĉ4 denotes the unperturbed 4-form potential in (2.2) which is the first term

in the expression for C4 above. It turns out that only Ĉ4 of C4 is relevant for a D7-brane

embedding up to order O(m2).
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yi, i = 4, 5, 6, 7, 8, 9

xµ, µ = 0, 1, 2, 3 ya, a = 5, 6, 8, 9 ym, m = 4, 7

D3 − · ·
D7 − − ·

Table 1: Orientation of the D7-brane probe w.r.t. the background-generating stack of D3-branes

in absence of the mass perturbation. The D3-branes are then localized (denoted by ‘·’) in the six

transverse directions, while the D7-branes fill four of these directions (denoted by ‘−’).

3. The action

The action for a D7-brane is given by the sum of the Dirac-Born-Infeld (DBI) and Chern-

Simons (CS) action, i.e.

S = SDBI + SCS , (3.1)

SDBI = − T7

e2φ̂

∫

d8 ξ eφ

√

∣

∣ det
(

P [g] + 2πα′ e−
φ−φ̂

2 F
)
∣

∣ , (3.2)

SCS = −µ7

∫ 4
∑

r=1

P [C2r] ∧ e2πα′F , (3.3)

where T7 = µ7 and the expressions are given in the Einstein frame which is related to the

string frame by using only the non-constant part φ̃ = φ − φ̂ of the dilaton φ. The field

strength F is a linear combination of the field strength F = d A of the worldvolume gauge

potential A and the pullback of B as

2πα′F = 2πα′F − P [B] . (3.4)

In [10] we have introduced the minus sign in (3.3) for physical reasons. We also assumed

there that it should be the right choice to preserve some supersymmetries of the background.

Here our modified treatment of the gauge field in general alters the embeddings. However,

based on the unaffected y4 embeddings, we can still favour this sign choice. At some points

we nevertheless also discuss the effects of the alternative choice. For a final decision, a

check of the κ-symmetry on the worldvolume of the D7-brane is required, which we leave

as an open problem.

In the coordinate system used in (2.1) the background-generating stack of D3-branes

and the D7-brane probe are oriented as shown in table 1. For embedding coordinates that

do not depend on the four worldvolume directions xµ, the pullbacks are non-trivial only

in the additional four directions labeled by ya. In static gauge, the pullback of a generic

2-tensor Eij on these directions reads

P [E]ab = Eab + ∂aX
mEmb + ∂bX

nEan + ∂aX
m∂bX

nEmn . (3.5)

Expanding the complete D7-brane action to quadratic order in the mass perturbation

– 6 –
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around the unperturbed background (2.1) and (2.2), we find

S = −T7

eφ̂

∫

d8 ξ
√

det P [δ]

[

1 + φ̃ +
1

2
Z

1

2 g̃µµ +
1

2
Z− 1

2 P [δ]abP [g̃]ab

+
Z−1

2

(

(α − β⋆4)P [B] · P [B] − 4πα′(µ − ν⋆4)F · P [B]

+ 4π2α′2(1 + ⋆4)F · F

+ τ e2φ̂ P [C̃2] · ⋆4P [C̃2]
)

]

,

(3.6)

where we have introduced constants which in the case of the Polchinski-Strassler back-

ground take values

α = 1 , β =
2

3
, µ = 1 , ν = −1

3
, τ = −1

3
, (3.7)

where τ must not be confused with the complex axion-dilation defined in (2.2). Further-

more, throughout the paper with a ‘tilde’ we denote the order O(m2) corrections2 to the

unperturbed quantities which carry a ‘hat’. We should stress that here the four-dimensional

inner product · as well as the Hodge star ⋆4 in (3.6) are understood to be computed with

the pullback of the Kronecker delta denoted by P [δ]ab. For two generic 2-forms ω2 and ω′
2

they are defined as

ω2 · ω′
2 =

1

2
P [δ]a1b1P [δ]a2b2ωa1a2

ω′
b1b2

, ⋆4ωa1a2
=

1

2

√

det P [δ]ǫ b1b2
a1a2

ωb1b2 , (3.8)

where ǫ5689 = 1, and indices are raised with the inverse of P [δ]ab denoted by P [δ]ab.

We have introduced the constants α, β, µ, ν, τ in (3.6) for two reasons. First of

all, we want to keep the option to alter the corresponding values. This turns out to be

necessary after the original treatment of the gauge field [10] has been modified as described

in section 4. Secondly, keeping these constants makes it easy to identify how the individual

parts in the action contribute to the equations of motion and thus how they take influence

on the embeddings.

With the above values of the parameters it is obvious that the action (3.6) no longer

depends on the gauge invariant combination (3.4) of the gauge field strength F and of the

pullback of B. The additional dependence on B arises because the expressions for C6 and

C8 in (2.16) explicitly contain B. They are obtained if we make use of (2.4) which relates

the 2-form potentials C̃2 and B to S2 an hence fixes their gauge freedom. This allows e.g.

P [B] to appear explicitly outside the combination F defined in (3.4). It also implies that

the equations of motion for F do not contain F and P [B] only as the combination F .

4. The gauge field equation revisited

The equations of motion for the D7-brane embedding coordinates depend on F . To deter-

mine the embeddings, we therefore have to discuss also the equation of motion for F and its

2By notational abuse, this does not apply to C̃2 and its field strength F̃3.
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solution. As we have already shown in [10], it in general contains source terms which come

from the terms linear in F in the action (3.6). In this section we will extend the discussion

from the N = 2 case to the generic N = 1 case. With an expansion of the embedding

coordinates we will show that up to order O(m2) no source terms for F are present. For

the O(m2) result to suffice, we will have to modify our previous understanding [10] of the

role of F .

A variation of the action (3.6) w.r.t. the gauge potential A gives the equation of motion

d
(

Ĉ4 ∧ (2πα′(⋆4 + 1)F − (µ ⋆4 −ν)P [B])
)

= 0 , (4.1)

where we have transformed inner products multiplied by the volume element into wedge

products by using the Hodge star ⋆4 and also the explicit unperturbed metric (2.1). In-

tegrating the above expression and inserting the explicit expression for Ĉ4 in (2.2), we

find

Z−1(2πα′(⋆4 + 1)F − (µ ⋆4 −ν)P [B]) = d P [ω1] . (4.2)

We have introduced ω1 to take into consideration the freedom in integrating the exterior

derivative. By acting with the linear combination 1 ± ⋆4, the above equation is separated

into two equations according to

4πα′Z−1F+ − (µ − ν)Z−1P [B]+ = dP [ω1]+ , (µ + ν)Z−1P [B]− = dP [ω1]− . (4.3)

We have thereby used that the decomposition of a 2-form ω2 in its selfdual and anti-selfdual

components ω2+ and respectively ω2− is given by

ω2 = ω2+ + ω2− , ω2+ =
1

2
(1 + ⋆4)ω2 , ω2− =

1

2
(1 − ⋆4)ω2 . (4.4)

While the first equation in (4.3) contains F+, the second one does not contain any degrees

of freedom of F . For µ + ν 6= 0 this equation in general is a non-trivial constraint for

the embedding coordinates, which enter via the pullback. It means that the pullback of

Z−1B has to follow as exterior derivative of a 1-form. One therefore has to solve a coupled

system of differential equations that consists of the equations of motion for the embedding

coordinates and the two equations in (4.3). In the following we describe a solution which

is based on perturbation theory.

We assume that, as the background itself, also the D7-brane embedding coordinates

ym(ya) can be treated perturbatively. The leading contributions are constants ŷm that

describe the constant embedding of D7-branes in pure AdS5 × S5 found in [14]. In the

Polchinski-Strassler background the embeddings are corrected at higher orders by non-

constant contributions ỹm(ya), such that we write

ym(ya) = ŷm + ỹm(ya) . (4.5)

In case of the N = 2 background [10] the decomposition was used to expand the action

and equations of motion for the embedding coordinates themselves. However, unlike here,

it was not used for determining the gauge field.

– 8 –
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The correction ỹm is of order O(m2). Since B itself is of order O(m), the derivative

terms in the pullbacks (3.5) in static gauge are therefore beyond the order O(m2) up to

which we consider the background and the equations of motion for ym. The same holds

for the pullback of the unperturbed diagonal metric (2.1), for which the terms linear in

the derivatives vanish exactly. Thus, the Hodge star as defined in (3.8) reduces to the one

in flat space. It is again advantageous to work in the complex basis (2.7), in which the

D7-brane embeddings oriented as in table 1 are along za, z̄a, a = 2, 3 and the transverse

embedding coordinates are given by zm, z̄m, m = 1. In this basis, the imaginary selfdual

and anti-selfdual components of any 2-form ω decompose as

ω2+ = ωP
(1,1) , ω2− = ω(2,0) + ω(0,2) +

1

2
ωaā d zb ∧ d z̄b , (4.6)

where P denotes the primitive part of ω2, i.e. ωP
aā = 0, and summations over a and b are

understood. The potential B is primitive. We therefore assume that so are F and d ω1.

The equations (4.3) then reduce to

4πα′Z−1F(1,1) − (µ − ν)Z−1B
‖
(1,1) = d ω

‖
(1,1) , (µ + ν)Z−1B

‖
(2,0) = d ω

‖
(2,0) , (4.7)

where by ‖ we denote the components of the corresponding form which are parallel to the

directions of the D7-brane. Up to order O(m2) we write

Im S
‖
(1,1) = − i

2
(Tm̄ab̄

ˆ̄zm − T̄mābẑ
m) d za ∧ d z̄b , Im S

‖
(2,0) = − i

4
T̄m̄ab ˆ̄z

m d za ∧ d zb ,

(4.8)

which according to (2.4) up to a constant factor are the components of Z−1B‖. The

two expressions follow as exterior holomorphic or anti-holomorphic derivatives of 1-form

potentials. With d = ∂ + ∂̄, we hence find that with the choice

ω
‖
1 = −i

ζ

12

(

2(µ − ν)(Tm̄ābz̄
a ˆ̄zm d zb − T̄mābz

aẑm d z̄b)

− (µ + ν)(T̄m̄abz
a ˆ̄zm d zb − Tmāb̄z̄

aẑm d z̄b)
)

(4.9)

all source terms for F vanish. This reflects the fact that in the original equation of motion

for F (4.1) the source terms vanish up to order O(m2), since P [B] as well as ⋆4P [B] have

constant components to this order. F should hence obey

d(Z−1F+) = 0 , d F = 0 , (4.10)

where the second relation is the Bianchi identity. Clearly, both equations are compatible

with a vanishing gauge field F = 0 on the D7-brane, which is what we will assume from now

on. We should keep in mind that in general the above equations and hence the vanishing

of F itself is not valid beyond the order O(m2). For example with the decomposition (4.5)

it follows that the solution for F found in [10] in the case of the N = 2 background is

non-vanishing because of order O(m3) terms. We had to keep these terms since we did not

consider F as an independent field. This means, we have plugged the found F into the

action before deriving the equations of motion for the embedding coordinates. The O(m3)

– 9 –
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terms of F that contained derivatives of the embedding coordinates then contributed to

the order O(m2) embedding equations of motion. However, we should have better regarded

F as an independent field and hence have inserted the result for F into the equations of

motion for ym. This procedure requires the result for F up to order O(m2) only.

At least for more than one flavour Nf > 1, the order O(m2) equations for F (4.10)

are solved not only by F = 0, but they also allow for non-vanishing instantonic (F+ = 0)

solutions. These purely anti-selfdual solutions correspond to VEVs for the bilinears which

are built from the scalar components (squarks) of the fundamental hypermultiplets in the

gauge theory [41, 42].

5. The expanded embeddings

5.1 Expanded action, equations of motion and solutions

In section 4 we have already made use of the expansion of the embedding into the constant

unperturbed part ŷm and the order O(m2) correction (4.5). Inserting this decomposition

into (3.6), the pullbacks of the Kronecker δ simplify to the Kronecker δ on the worldvolume

of the D7-brane. Since the equations of motion are found by taking derivatives w.r.t. ỹm

and ∂aỹ
m, one has to keep those terms which contribute up to order O(m2) to the equations,

even if they are of higher order in the action. The action (3.6) is then expanded as

S = −T7

eφ̂

∫

d8 ξ

[

1 + φ̃ +
1

2
Z

1

2 g̃µµ +
1

2
Z− 1

2 g̃aa +
1

2
(∂aỹ

m)2 + Z− 1

2 ∂aỹ
mg̃ma

+
1

2
Z−1

(

(α − β⋆4)B · B + 4(γ − δ⋆4)B · ∂ỹB

− 4πα′(µ − ν⋆4)F · (B + 4∂ỹB) + 4π2α′2(1 + ⋆4)F · F

+ τ e2φ̂ ⋆4C̃ · (C̃ + 4∂ỹC̃)
)

]

,

(5.1)

where the inner product and the Hodge star operator are computed w.r.t. the flat 4-

dimensional metric. We have furthermore used the abbreviations

(∂ỹB)ab = ∂aỹ
mBmb , (∂ỹC̃)ab = ∂aỹ

mC̃mb , (5.2)

and in addition we have introduced the constants

γ = 1 , δ =
2

3
, (5.3)

which in our case take the same values as respectively α and β in (3.7). As already

explained at the end of section 4, inserting the non-vanishing solution for the gauge field

found in [10] directly into the action alters some terms that contain derivatives of the

embedding coordinates. The values of two parameters γ and δ then become

γ =
1

3
, δ =

4

3
, (5.4)
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while the F -dependent terms then have to be removed from (5.1). To describe both cases,

we keep γ and δ as independent constants.

The equations of motions for the embedding coordinates, which follow from the ac-

tion (5.1), are given by

∂a

(

∂aỹ
m+Z− 1

2 g̃ma+Z−1
(

(γ − δ⋆4)BabBmb−2πα′(µ − ν⋆4)FabBmb+τ e2φ̂ ⋆4C̃abC̃mb

)

)

=
∂

∂ỹm

(

φ̃ +
1

2
Z

1

2 g̃µµ +
1

2
Z− 1

2 g̃aa +
1

2
Z−1

(

(α − β⋆4)B · B + τ e2φ̂ ⋆4C̃2 · C̃2

)

)

∣

∣

∣

ỹm=0

+ 2πα′
(

πα′ ∂

∂ỹm
Z−1(1 + ⋆4)F · F − (µ − ν⋆4)F · ∂

∂ỹm
(Z−1B)

)

∣

∣

∣

ỹm=0
.

(5.5)

The solution F = 0 of (4.1) is from now on inserted into the above equations.

It is advantageous to introduce polar coordinate systems for the four worldvolume di-

rections ya of the D7-brane and for the two transverse directions ym. The radial coordinate

r of the full six-dimensional transverse space as defined in (2.1) splits into the radii ρ on

the D7-brane worldvolume and u of the two transverse embedding directions according to

r =
√

ρ2 + u2 , ρ =
√

yaya , u =
√

ymym , (5.6)

where summations over a and m are understood. In the polar coordinate system with

angular coordinate ψ the two embedding coordinates ym read

y4 = u cos ψ = û cos ψ̂ − ûψ̃ sin ψ̂ + ũ cos ψ̂ ,

y7 = u sin ψ = û sin ψ̂ + ûψ̃ cos ψ̂ + ũ sin ψ̂ .
(5.7)

In the final equalities we have expanded up to linear order in the corrections ũ and ψ̃ to

the unperturbed radius û and angle ψ̂ which also present the boundary values at ρ → ∞
of the embedding functions. In the dual gauge theory û determines the mass mq of the

quarks via mq = 1
2πα′ û.

In appendix B we derive the equations of motion (5.5) in the above coordinate system.

They assume the same form for the radial coordinate u as also for the angle ψ, such that

we can compactly write

2∂a∂āf =
nf

r̂4

(

Bf + Cf
û2

r̂2
− CI

fyI
ρ2

r̂2

)

, (5.8)

where we set either f = u or f = ψ and identify the normalization factor with nu = û

and nψ = 1, respectively. The r.h.s. depends on ρ explicitly and implicitly via the total

radius r̂ which is found from (5.6) when only the unperturbed parts ŷm of the embedding

coordinates are inserted. The dependence on the three angles in the four worldvolume

directions ya of the D7-brane is encoded within four of the nine l = 2 SO(4) spherical

harmonics yI which are defined in (B.16). The constants Bf , Cf and CI
f which depend on

the masses, the parameters (3.7) and (5.3) and the angle ψ̂ are given in (B.21) for f = u

and in (B.22) for f = ψ.
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In appendix D we show that, fixing the boundary value to f̂ , the above differential

equation admits a unique analytic regular solution. Together with its derivatives it is given

in (D.10) and reads

f = f̂ − nf

8

(

Bf
2

ρ2
ln

r̂2

û2
+ Cf

1

r̂2
− CI

f

(

2

ρ2

(

1 − û2

ρ2
ln

r̂2

û2

)

− 1

r̂2

)

yI

)

,

∂ρf =
nf

4

(

Bf
2

ρ

(

1

ρ2
ln

r̂2

û2
− 1

r̂2

)

+ Cf
ρ

r̂4
− CI

f

(

2

ρ3

(

1 − 2
û2

ρ2
ln

r̂2

û2
+

û2

r̂2

)

− ρ

r̂4

)

yI

)

,

∂2
ρf =

nf

4

(

Bf
2

ρ2

(

− 3

ρ2
ln

r̂2

û2
+

3

r̂2
+ 2

ρ2

r̂4

)

+ Cf
1

r̂4

(

1 − 4
ρ2

r2

)

− CI
f

(

− 20

ρ4

(

1 − û2

ρ2
ln

r̂2

û2

)

+
1

ρ2r̂2

(

10 + 3
ρ2

r̂2

)

+ 4
ρ2

r̂6

))

yI

)

,

(5.9)

where I is a summation index that runs over the four combinations that label the spher-

ical harmonics yI . The solution and their derivatives have asymptotic behaviours found

in (D.11). The results read

f =

{

f̂ − nf

8û2 (2Bf + Cf ) ρ → 0

f̂ − nf

8ρ2

(

2Bf ln ρ2

û2 + Cf − CI
f yI

)

ρ → ∞
,

∂ρf =

{

0 ρ → 0
nf

4ρ3

(

2Bf (ln ρ2

û2 − 1) + Cf − CI
fyI

)

ρ → ∞
,

∂2
ρf =

{

nf

12û2 (3(Bf + Cf ) + CI
fyI) ρ → 0

nf

4ρ4 (2Bf (−3 ln ρ2

û2 + 5) − 3Cf + 3CI
f yI) ρ → ∞

,

(5.10)

where in case of the ρ → ∞ limit we also have kept the next subleading contributions.

Based on the above results the monotony properties of the solutions and also estimates of

the deviation from the full numerical results are discussed in the following.

5.2 Monotony properties of the solutions

A physical embedding should lead to a monotonically increasing function r(ρ) [26]. Taking

the derivative of the total radius r as defined in (5.6) w.r.t ρ, and expanding the result up

to order O(m2), we find the condition

r̂∂ρr = ρ − ρû

r̂2
ũ + û∂ρũ ≥ 0 . (5.11)

Inserting the explicit result for u(ρ) taken from (5.9), the result reads

r̂∂ρr = ρ +
û2

8

(

Bu
2

ρ

((

1

r̂2
+

2

ρ2

)

ln
r̂2

û2
− 2

r̂2

)

+ 3Cu
ρ

r̂4

+ CI
u

(

3
ρ

r̂4
+ 2

û2

ρ3

(

1

r̂2
+

4

ρ2

)

ln
r̂2

û2
+

2

ρr̂2
− 8

ρ3

)

yI

)

.

(5.12)

At large ρ, this expression is dominated by the first term, and therefore r(ρ) is linearly

increasing with ρ there. For ρ ≪ û the above result expands as

r̂∂ρr =

(

1 +
1

24û2
(12Bu + 9Cu + 2CI

uyI)

)

ρ . (5.13)
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0

1

2

3

u(ρ)

ρ

©1

Bu < 0, Cu < −Bu

©2
Bu < 0, Cu > −Bu

©3 Bu > 0, Cu < −Bu

©4
Bu > 0, Cu > −Bu

Figure 1: The four possible types of embeddings, presented for illustration with the values û = 1.5,

mR2 = 1, |Cu| = 2|Bu| = 8.

Since the constants Bu, Cu and CI
u are proportional to m2R4, the derivative ∂ρr becomes

negative only if their linear combination is negative and if û . mR2 is sufficiently small

to compensate the leading term. We do not investigate this further, since in the regime

û . mR2 the analytic solution based on the expansion (4.5) cannot be trusted anyway, and

therefore the exact result is required for a precise statement on the monotony properties.

In any case, for û sufficiently large, one finds that r(ρ) is monotonically increasing and

hence the embedding is physical.

The requirement that r(ρ) has to be a monotonically increasing function does not

imply that u(ρ) has to be monotonic, and in fact in general it is not. As shown in figure 1,

with CI
u = 0 we find four distinct behaviours, depending on the relations between Bu and

Cu. Two of them are monotonically increasing and respectively decreasing, while the other

two assume an intermediate relative maximum or minimum. This is also visible from the

asymptotic behaviour in (5.10). The transition between a monotonic and non-monotonic

embedding takes place at

Cu = −Bu . (5.14)

It is interesting to analyze the behaviour of u(ρ) under a relative sign flip between

the DBI and CS action (3.2) and (3.3). We just have to compare the relations between

Bu and Cu for both choices of the relative sign. In the combined expanded action (5.1) a

change of the relative sign inverts the signs in front of all Hodge stars, i.e. the parameters

β, δ and τ change their signs. As seen from (B.21), the coefficient Cu only depends on the

combinations α±β − (γ± δ). It is therefore insensitive to such a sign flip as long as β = δ.

The coefficient Bu differs from B
(−)
u , which is the one found in case of a relative minus sign

between the DBI and CS action, as

Bu − B(−)
u =

ζ2R4

18

(

(m2
2 + m2

3 − m2
1)(τ − β) + 2m2m3(β + τ) cos 2ψ̂

)

, (5.15)
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where in the Polchinski-Strassler background β and τ assume the values given in (3.7). In

particular, one has β = −2τ > 0. If m2 = m3 = m and either m1 = 0 or m1 = m we

find the inequality Bu < B
(−)
u for arbitrary values of the angle ψ̂. Therefore, a relative

minus sign between the DBI and CS action leads to D7-brane embeddings which are more

attracted towards the center of the space. If m1 = m2 = m and m3 = 0, Bu is independent

of the relative sign choice, i.e. Bu = B
(−)
u .

In the following we keep the sign choice as in [10]. The y4 embedding in the case

m1 = 0 and m2 = m3 = m then is monotonically decreasing as a function of ρ. The

alternative sign choice would alter this behaviour and lead to an intermediate minimum,

as in the third case presented in figure 1. A numerical study reveals that the allowed radial

boundary values û for which the y4 embeddings obey u(ρ) > 0, differ for both choices of the

sign. For the sign choice as in [10] the y4 embeddings can assume all values û ≥ 0, while

for the alternative sign choice û is restricted from below by û ≥ û0 > 0. There appears

thus a gap in the allowed values for û, separating the case û = 0 from the continuum

û ≥ û0 > 0. This is a disfavoured behaviour. We stress that the embeddings with û ≃ û0

enter the region in which the expansion of the background itself breaks down. One must

therefore not use this observation to completely rule out the possibility of a relative minus

sign between the DBI and CS action. For a confirmed answer which of the sign choices is

the correct one to preserve some supersymmetry, one has to check the κ-symmetry up to

order O(m2).

Inserting the explicit values α = γ = 1, β = δ = 2
3 τ = −1

3 for the Polchinski-Strassler

background, we find that the only non-vanishing coefficients are given by

Bu = −ζ2R4

216

(

3(m2 + m3)
2 + 5(m2 − m3)

2 − 4m2
1 + 4m2m3(1 − cos 2ψ̂)

)

,

Cu = −ζ2R4

324

(

7(m2 + m3)
2 − 11(m2 − m3)

2 − 4m2
1 − 36m2m3(1 − cos 2ψ̂)

)

,

(5.16)

or respectively

Bψ = −ζ2R4

54
m2m3 sin 2ψ̂ ,

Cψ =
2ζ2R4

27
m2m3 sin 2ψ̂ ,

C+−
ψ =

ζ2R4

54
m1(m2 + m3) ,

C−−
ψ = −ζ2R4

54
m1(m2 − m3) .

(5.17)

It is interesting to notice that the identification γ = 1 implies that CI
u = 0 and

C±+
ψ = 0. This ensures that the radial embedding coordinate u remains independent of

the angles in the D7-brane worldvolume coordinate system, regardless of the values of the

masses and the other parameters. Furthermore, the dependence of the angular embedding

coordinate ψ on the worldvolume angles is also reduced to only two spherical harmonics

y±− in the generic mass case, and their corresponding coefficients C±−
ψ become independent

of the unperturbed angle ψ̂. For m2 = m3 the embedding depends only on y+−, and for

m1 = 0 in any case ψ does not depend on any of the SO(4) spherical harmonics.

5.3 The N = 2 case with m1 = 0 and m2 = m3 = m revisited

If the mass parameters are given by m1 = 0 and m2 = m3 = m, the dual gauge theory

preserves N = 2 supersymmetries. Adding D7-brane probes as indicated in table 1 should
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Figure 2: Analytic (solid line) and exact numerical (dashed line) embeddings along y7 for F = 0 in

the N = 2 background with masses m1 = 0, m2 = m3 = m = 0.2 and distinct boundary values ŷ7.

The grey quarter circle corresponds to r ≤ mR2, into which the background-generating D3-branes

are expected to expand. Lengths and masses are dimensionless and measured in units of R and

R−1 respectively. The dimensionless boundary value ŷ7 determines the dimensionful quark mass

mq according to mq = R

2πα′
ŷ7.

not break these supersymmetries. We denote them as N = 2‖ embeddings. Already at the

end of section 4 we have stressed that in [10] the N = 2‖ embeddings have been studied by

inserting the solution for the gauge field into the action before extracting the equations of

motion for the embedding coordinates. The respective action is given by (5.1) with F = 0

and γ and δ assuming the values given in (5.4). However, we should consider the gauge

field as an independent field and thus insert the solution for its field strength F into the

equations of motion for the embedding coordinates. In this case we identify γ = α and

δ = β with the explicit values given in (3.7). According to (B.21) and (B.22) this alters

the values of Cu and Cψ w.r.t. the ones in [10], while Bu and Bψ are independent of γ and

δ and thus remain unchanged. All the other coefficients vanish for m1 = 0 anyway. The

expressions which substitute the ones in [10] then read3

Cu = −ζ2m2R4

81
(−2 + 9 cos 2ψ̂) , Cψ =

2ζ2m2R4

27
sin 2ψ̂ . (5.18)

Our analytic solutions with ψ̂ = 0 here and in [10] are based on F = 0. As is seen

directly from (B.21), with ψ̂ = 0 also Cu does not depend on γ and δ and Cψ = 0. The

corresponding embeddings thus coincide for both treatments of the gauge field. For ψ̂ = π
2

a difference arises in the radial embedding coordinate u. While in [10] Cu is negative for

any choice of ψ̂, here it becomes positive for cos 2ψ̂ < 2
9 which in particular is the case for

ψ̂ = π
2 . This changes the behaviour of the solution. In [10] for any angle ψ̂ the function

u(ρ) is monotonically decreasing and hence corresponds to the first case in figure 1.

Here, the function u(ρ) assumes a relative maximum at an intermediate value ρ if ψ̂

3Our definitions for Bψ and Cψ differs from the ones in [10]. To match the conventions there, we have

to multiply our results by a factor 1

û
.
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fulfills

cos 2ψ̂ < − 8

15
. (5.19)

In particular this is the case for ψ̂ = π
2 .

In figure 2 we compare the analytic solution with the numerical one for F = 0. The

latter is based on the action

S = − T7

eφ̂

∫

d4 ξ dΩ3 d ρ

[

ρ3
√

1 + y′2 +
ρ3m2R4

36r4
√

1 + y′2
×

×
(

10ρ2 + 14y2 + 23ρ2y′2 + y2y′2 − 26ρyy′ − 24
√

1 + y′2(y2 − ρyy′)
)

]

,

(5.20)

where y = y7. This result replaces the corresponding one in [10]. We should stress that

even if the numerical embeddings are obtained from the action (5.20) without making use

of the expansion (4.5), they are not independent of it. The expansion has already been

used in section 4 to obtain F = 0 which then enters the action (5.20).4 For a complete

independence of the expansion, one should solve the equations of motion for F and for the

embedding coordinates directly as a coupled system. We refrain from this more complicated

analysis, since the similarity of the numerical results and the exact solutions in figure 2

suggests that this should not change the numerical result significantly.

5.4 The N = 2 case with m1 = m2 = m and m3 = 0

Since we have at hand the expression with generic masses, we can easily study the case

m1 = m2 = m and m3 = 0 in which the Polchinski-Strassler background still preserves

N = 2 supersymmetries, but the embeddings oriented as shown in table 1 should break

(part of) the supersymmetries. We denote them as the N = 2⊥ embeddings. Due to (5.16)

and (5.17) the non-vanishing coefficients are given by

Bu = −ζ2m2R4

54
, Cu =

4ζ2m2R4

81
, C±−

ψ = ±ζ2m2R4

54
. (5.21)

They do not depend on the unperturbed angular embedding coordinate ψ̂. According

to (5.10) and figure 1, the relations between Bu and Cu tell us that u(ρ) is not monotonic,

assuming a maximum at an intermediate value ρ. The radial embeddings are shown in

figure 3. The angular embeddings depend on all three angles in the four worldvolume

coordinates ya via the two SO(4) spherical harmonics y+− and y−− defined in (B.16).

5.5 The N = 1 case with equal masses

A case of particular interest is the one of D7-brane embeddings into the N = 1 Polchinski-

Strassler background with equal masses. The non-vanishing coefficients of the solution

in (5.9) are again found from (5.16) and (5.17). They read

Bu = −ζ2m2R4

54
(3 − cos 2ψ̂) , Cu =

ζ2m2R4

27
(1 − 3 cos 2ψ̂) , (5.22)

4An insertion of F = 0 into the equations of motion is equivalent to an insertion directly into the action.
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Figure 3: Radial embeddings in the N = 2 background with masses m1 = m2 = m = 0.2, m3 = 0

and distinct boundary values û. The grey quarter circle corresponds to r ≤ mR2, into which the

background-generating D3-branes are expected to expand. Lengths and masses are dimensionless

and measured in units of R and R−1 respectively. The dimensionless boundary value û determines

the dimensionful quark mass mq according to mq = R

2πα′
û.

0 0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

0.5

y4(ρ)

ρ

ŷ4 = 0.1
ŷ4 = 0.15

ŷ4 = 0.22

ŷ4 = 0.45

Figure 4: Embeddings along y4 in the N = 1 background with masses m1 = m2 = m3 = m = 0.2

and distinct boundary values ŷ4. The grey quarter circle corresponds to r ≤ 1
2
mR2, into which the

background-generating D3-branes are expected to expand. Lengths and masses are dimensionless

and measured in units of R and R−1 respectively. The dimensionless boundary value ŷ4 determines

the dimensionful quark mass mq according to mq = R

2πα′
ŷ4.

and

Bψ = −ζ2m2R4

54
sin 2ψ̂ , Cψ =

2ζ2m2R4

27
sin 2ψ̂ , C+−

ψ =
ζ2m2R4

27
. (5.23)

The function u(ρ) ceases to be monotonic for

cos 2ψ̂ < −1

5
. (5.24)

As in the N = 2 case, this in particular happens for ψ̂ = π
2 . Embeddings with constant

angular direction ψ do not exist at all in the N = 1 case. However, the embeddings with
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Figure 5: Embeddings along y7 in the N = 1 background with masses m1 = m2 = m3 = 0.2

and distinct boundary values ŷ7. The grey quarter circle corresponds to r ≤ 3
2
mR2, into which the

background-generating D3-branes are expected to expand. Lengths and masses are dimensionless

and measured in units of R and R−1 respectively. The dimensionless boundary value ŷ7 determines

the dimensionful quark mass mq according to mq = R

2πα′
ŷ7.

ψ̂ = 0 or ψ̂ = π
2 are still peculiar, since they are directed along or respectively perpendicular

to the principal axis with length determined by m1 of the polarization ellipsoid of the D3-

branes.

The explicit expression for the radial embedding coordinate in the case ψ̂ = 0 where

u = y4 and 2Bu = Cu reads

u = û

(

1 +
ζ2m2R4

108

(

1

ρ2
ln

r̂2

û2
+

1

r̂2

))

, (5.25)

while for ψ̂ = π
2 where u = y7 we find

u = û

(

1 +
ζ2m2R4

54

(

1

ρ2
ln

r̂2

û2
− 1

r̂2

))

, (5.26)

which has the property that u(0) = û as follows from (5.10) with the relation 2Bu = −Cu

in this case. We have printed the corresponding y4 embedding in figure 4 and the y7

embedding in figure 5. The background-generating D3-branes extend in these directions

with two different radii [10].

For the angular embeddings with ψ̂ = 0 or ψ̂ = π
2 we find Bψ = Cψ = 0, like in the

corresponding N = 2 cases. Only C+−
ψ is non-zero. Defining polar coordinates for the

four worldvolume coordinates ya as in (B.17), the corresponding spherical harmonic y+−
only depends on two combinations of the three worldvolume angles. Up to the respective

constant boundary values ψ̂ = 0 or ψ̂ = π
2 , the angular embedding is identical for both

cases. We find

ψ = ψ̂ +
ζ2m2R4

216

(

2

ρ2

(

1 − û2

ρ2
ln

r̂2

û2

)

− 1

r̂2

)

y+− . (5.27)

In the 2-dimensional subplane given by y5 = y8 = ρ√
2
cos φ1, y6 = −y9 = ρ√

2
sinφ1 in the

coordinates (B.17), in which according to (B.18) y+− = cos 2φ1, the angular embedding is

shown in figure 6.
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ψ(ρ, φ1)

y5 = y8

y6 = −y9

Figure 6: Form of the angular embedding in the N = 1 background with masses m1 = m2 =

m3 = m in the 2-dimensional subplane defined by y5 = y8, y6 = −y9.

5.6 Error estimates

With the expansion (4.5) we have found the regular analytic solutions (5.9) for the embed-

ding coordinates. In the following we will analyze in which regimes these solutions with

underlying action (5.1) are good approximations to the exact solutions which we can only

find numerically from the corresponding action (3.6). We recall that by exact solutions we

mean the exact solutions in the order O(m2) Polchinski-Strassler background. One should

keep in mind that even these solutions are limited to the regime in which a perturbative ex-

pansion of the background around AdS5×S5 is justified. The embeddings should avoid the

deep interior of the space in which the extension of the background-generating D3-brane

sources becomes important. This requires r & mR2. The embeddings that are attracted

by the origin of the space should have a boundary condition û & mR2, while the ones that

are repulsed can stay away from the interior of the space also for û ≪ mR2 .

To derive from the action (3.6) the result (5.1) we have neglected terms that are beyond

linear order in ỹm and in the derivatives ∂aỹ
m. This allows us to estimate an upper bound

for the difference between the exact numerical embeddings and the corresponding analytic

solutions. It should be given by max
(∣

∣

ỹ
ŷ

∣

∣, |∂ỹ|
)

. In table 2 we show the extrema ρe and

turning points ρt of the radial embedding coordinates in the previously discussed special

cases. The presented normalized expressions are independent of the explicit values of m,

R and û. To find the relative deviation from the exact result for the radial embeddings

one first has to select the maximum value of
∣

∣

ũ(ρe)
û

∣

∣ and |u′(ρt)|. For û = mR2 this directly

gives the respective upper bound on the relative deviation. For û 6= mR2 we also have to

restore the normalization by multiplying with m2R4

û2 . For the y4 embedding in the N = 2‖
case the deviation is quite substantial with 4

9 ≃ 44.4%. Doubling û brings it already down
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N = 2‖ N = 2⊥ N = 1

ψ̂ 0 π
2 0 π

2

Bu

m2R4 −1 −5
3 −1

3 −2
3 −4

3

Cu

m2R4 −14
9

22
9

8
9 −4

3
8
3

ρe

û
0 0 0.912 0 2.140 0 0 1.471

ûũ(ρe)
m2R4

4
9

1
9 0.136 − 1

36 0.011 1
3 0 0.072

ρt

û
0.640 0.383 1.814 0.501 3.273 0.630 0.462 2.432

û2u′(ρt)
m2R4 −0.226 0.045 −0.036 0.040 −0.002 −0.174 −0.090 −0.016

Table 2: The three different types of radial embeddings with their values of the constants Bu and

Cu in units of m2R4 and the corresponding extrema ρe and turning points ρt in units of û. The

correction ũ(ρe) is measured in units m
2
R

4

û
and the first derivative u′(ρt) in units of m

2
R

4

û2 .

to 11.1%. For û = mR2 the y7 embedding only deviates 13.6% from the exact solution.

In all cases, the non-monotonic embeddings are much more accurately described by the

analytic solution than the monotonic ones. Furthermore, the situation improves in the

N = 2⊥ case and in the N = 1 background with equal masses.

We should stress here that û = mR2 in general yields embeddings that run into a

regime where the error from the perturbative expansion of the background itself should

already be substantial. The corresponding analytic as well as the exact solutions should

not be trusted carelessly. Only in the case of monotonically decreasing embeddings the

exact solutions are substantially superior to the analytic ones, since they avoid the region

of small r even for û ≪ mR2 and hence can be trusted. The analytic solution does not

hold for û ≪ mR2. The situation is different for the non-monotonic embeddings. The

ones that avoid the region of small r obey û & mR2 and thus are accurately described also

by the analytic solution. A comparison with figure 2 furthermore suggests that the above

described procedure provides quite appropriate estimates of the deviation.

6. Holographic renormalization

The non-constant boundary behaviour (5.10) of the found embeddings might imply the

presence of a VEV for the fermion bilinear (quark condensate) in the dual gauge theory

which would break supersymmetry. In the holographic gravity description the VEV is

determined by varying the on-shell action w.r.t. the boundary value û. This procedure

requires holographic renormalization [38 – 40] to cancel the occurring divergences by ap-

propriate counterterms. By also including appropriate finite counterterms the renormalized

on-shell action can be made vanishing. In particular, a quark condensate is hence absent

and our found embeddings of the form (5.9) are at least consistent with supersymmetry.

Surprisingly, the procedure works for the action (5.1) independent of the concrete values
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for the introduced constants. Therefore, also the case with an alternative relative sign

choice between the DBI and CS action is covered, implying that the procedure does not

provide further information for finally fixing this sign.

In appendix C we derive the explicit form of the expanded action (5.1), which is then

given by (C.7). The terms of relevance for the holographic renormalization procedure read

S = −T7

eφ̂

∫

d ξ4 d Ω3 d ρρ3

[

1 +
Bu

2

û2

r̂4
(6.1)

+
ζ2

216
Ẑ

(

5

3
M2(r̂2 + û2) + 3m1((m2 + m3)y++ − (m2 − m3)y−+)ρ2

)]

,

where we remind that M2 is the sum of all three mass squares as defined in (2.12). We

transform to a new coordinate χ that parameterizes the radial direction. The relations

read

r̂ =
1√
χ

, ρ2 =
1

χ
− û2 , ρd ρ = − dχ

2χ2
, ∂ρ = −2ρχ2∂χ . (6.2)

Performing the radial integration over the interval ε ≤ χ ≤ 1
û2 , the regularized on-shell

action is given by

Sreg = − T7

2 eφ̂

∫

d ξ4 d Ω3

[

1

2ε2
+

û4

2
− û2

ε
− Bu

û2

2
(ln εû2 + 1 − εû2)

+
ζ2R4

216

5

3
M2

(

1

ε
− 2û2 + εû4

)]

.

(6.3)

From (5.9) we derive the solution for the radial embedding coordinate in the variable χ. It

is given by

u = û − û

8
χ

(

− Bf
2

1 − χû2
ln χû2 + Cf + CI

f

(

1 − 2

1 − χû2
− 2χû2

(1 − χû2)2
ln χû2

)

yI

)

.

(6.4)

We evaluate the above relation at χ = ε, expand it up to order O(ε2), and invert it to

express the boundary value û in terms of the value uε = u(ε). The inverted relation then

reads

û = uε

(

1 +
ε

8

(

− 2Bu(1 + εu2
ε) ln εu2

ε + Cu − CI
u

(

1 + 2εu2
ε(1 + ln εu2

ε)
)

yI

)

)

. (6.5)

This result is inserted into the regularized on-shell action (6.3). The terms that contain a

single spherical harmonic yI drop out when the angle integration is performed. Thus we

obtain

Sreg = −T7

eφ̂

Ω3

2

∫

d ξ4

[

1

2ε2
+

u4
ε

2
− u2

ε

ε
− (2Bu + Cu)

u2
ε

4
(1 − εu2

ε)

+
ζ2R4

216

5

3
M2

(

1

ε
− 2u2

ε + εu4
ε

)]

,

(6.6)

where Ω3 is the volume of the unit S3. In contrast to (6.3), which is a functional of the

boundary value û, the above result depends on the data uε at the regulator hypersurface

– 21 –



J
H
E
P
0
8
(
2
0
0
7
)
0
3
1

at χ = ε. By this change of variables the logarithmic term that is present in (6.3) cancels

out. With the local counterterm action given by

Sct =
T7

eφ̂

Ω3

2

∫

d ξ4

[

1

2ε2
+

u4
ε

2
− u2

ε

ε
− (2Bu + Cu)

u2
ε

4
+

ζ2R4

216

5

3
M2

(

1

ε
− 2u2

ε

)]

, (6.7)

we can then make the subtracted action Ssub = Sreg + Sct vanish. To this purpose we

have also included finite counterterms in the above expression. The explicit form of the

combination 2Bu + Cu found from (B.21) is given by

2Bu + Cu =
ζ2R4

18

(

(m2 + m3)
2τ + (m2 − m3)

2(γ − δ)

+ m2
1(γ + δ − τ) + 2m2m3(γ − δ − τ)(1 − cos 2ψ̂) − 10

9
M2

)

.
(6.8)

The counterterm action is then explicitly given by

Sct =
T7

eφ̂

Ω3

2

∫

d ξ4

[

1

2ε2
+

u4
ε

2
− u2

ε

ε
+

ζ2R4

216

5

3ε
M2 − ζ2R4

72

(

(m2 + m3)
2τ + (6.9)

+(m2 − m3)
2(γ − δ) + m2

1(γ + δ − τ) + 2m2m3(γ − δ − τ)(1 − cos 2ψ̂)
)

u2
ε

]

.

For any values for the constants and mass parameters that enter the action (5.1) we can

therefore obtain Ssub = 0 at least up to order O(m2) and hence show that no quark

condensate can be present up to this order.

We should remark that in the N = 2 Polchinski-Strassler background with the pa-

rameters given by (3.7) and (5.4) our result (6.9) should reduce to the one found in [10].

However, our equation (F.1) in [10] contains an error. It only affects the embedding with

ψ̂ = π
2 , since it is caused by a wrong sign in front of a term which is proportional to

1 − cos 2ψ̂. To correct this mistake, one has to replace −(1
3 + cos 2ψ̂) in the second line of

(F.1) by −(7
3 − cos 2ψ̂). In equation (F.3) one then has to set c0 = −10

3 . This mistake has

no further effect, since the statement c0 + c1 − 5
3 = 0, which is essential for the procedure

to succeed, is in fact only fulfilled by the corrected numerical value. The finite counterterm

then depends on ψ̂, as is also seen from the above result (6.9).

7. Conclusions

In this paper we have analyzed the embedding of D7-brane probes into the Polchinski-

Strassler background at order O(m2), keeping the three mass perturbation parameters

general. To this order we have seen that all embeddings are consistent with a vanishing

gauge field strength F = 0 on their worldvolumes. Thereby, the expansion of the em-

bedding coordinates ym into a constant unperturbed embedding ŷm in AdS5 × S5 and a

non-constant correction ỹm of order O(m2) decoupled the differential equations for F and

ym. This expansion resembled the perturbative expansion in which the known part of the

Polchinski-Strassler background itself is given. It also allowed us to find analytic solutions

for the expanded embedding.
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If the additional constant γ introduced into the action assumes its value γ = 1, the

radial embedding coordinate u is a function of only the worldvolume radial direction ρ

for all values of the mass parameters and for all choices of the embedding angle ψ̂. The

angular embedding coordinate ψ itself depends on the three worldvolume angles if the mass

parameter m1 associated to the embedding directions z1, z̄1 is non-zero. For γ = 1 the

angular dependence is encoded in only two l = 2 SO(4) spherical harmonics, and their

coefficients do not depend on the boundary value ψ̂ of the embedding angle. Moreover, the

angular dependence reduces to only one spherical harmonic if the two masses ma, a = 2, 3

that correspond to the worldvolume directions za, z̄a are equal. A complete independence

from the worldvolume angles as found in the N = 2 case [10] cannot be reached in the

Polchinski-Strassler case if all masses are different from zero, even if they are equal. This

would require that the parameters in the action (5.1) fulfilled γ + δ + τ = 1, such that

with γ = 1 embeddings with arbitrary ψ̂ would not depend on the worldvolume angles. If

γ + δ + τ = 1 but γ 6= 1 at least the embeddings with ψ̂ = 0, π
2 became angle independent.

The angle dependence of the embeddings is understandable if one remembers that for

m1 = m2 = m3 = m the background-generating D3-branes are polarized into an ellipsoid

with distinct lengths of its principal axes. This breaks the SO(4) rotational symmetry in

the worldvolume directions of the embedded D7-brane [10]. Surprisingly, this does not

affect the radial embedding coordinate u which with γ = 1 in all cases only depends on ρ.

It would be interesting to find an interpretation for the condition γ + δ + τ = 0 for

which angle independent embeddings can be found. The above given relation might be

fulfilled in a more symmetric background in which the D3-branes are polarized not into an

ellipsoid but into a sphere. In this context one could analyze the polarization in presence of

a non-vanishing gaugino mass [13]. Furthermore, it appears to be interesting to study the

embedding of a stack of coincident D7-branes with non-vanishing worldvolume instantons

along the lines of [23, 41 – 43]. The backreaction of the instanton gauge field strength on

the embeddings could also influence their worldvolume angle dependence. There might

exist particular cases in which the embeddings do not depend on these angles.

We have then discussed the monotony properties of the analytic radial solutions u(ρ)

and found four types of embeddings. For all of these the radial coordinate in six dimensions

r(ρ) is a monotonically increasing function at least for sufficiently large boundary value û,

such that the embeddings are physical [26].

With F = 0 we have revisited the y7 embedding in the N = 2 case with our modified

treatment of the gauge field. This changed the monotonically decreasing y7(ρ) found in [10]

into a non-monotonic one that still led to a monotonically increasing r(ρ). We compared

the analytic solution with the numerical exact solution and found agreement.

Furthermore, we have discussed in brief the case of a D7-brane probe with a different

orientation in the N = 2 background and the y4 and y7 embeddings in the N = 1 case with

equal masses. We then proposed error estimates for the corresponding analytic solutions.

In a last step we have applied the method of holographic renormalization to the ac-

tion (5.1) of a D7-brane probe. In the general case this demonstrated that the embeddings

did not induce a non-vanishing quark condensate in the dual boundary theory, since the

subtracted action could be made vanish by adding appropriate finite counterterms.
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Our final remark concerns the meson spectra. We believe that qualitatively for all

the discussed embeddings the corresponding spectra will show mass gaps, and the squared

meson mass M2(m2
q) should be a (nearly) linear function of the squared quark mass m2

q. In

case of the N = 2‖ embeddings we have already given indications for this behaviour in [10].
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A. Generalization to arbitrary masses

Here we present the necessary expressions to compute the equations of motion and the ac-

tion explicitly. They are the generalizations to three arbitrary masses of the corresponding

expressions in the N = 2 Polchinski-Strassler background with m1 = 0, m2 = m3 = m

computed in [10], where all necessary conventions can be found. We again work in the

complex basis (2.7). Inserting the components (2.8) of T3 in this basis into (2.4), we find

for the components of C̃2 and B the explicit expressions

C̃pq = e−φ̂ ζ

6
Zǫrpqmrz̄

r ,

C̃pq̄ = e−φ̂ ζ

6
Zǫrpq(mpz̄

r + mqz
r) ,

C̃p̄q = e−φ̂ ζ

6
Zǫrpq(mq z̄

r + mpz
r) ,

C̃p̄q̄ = e−φ̂ ζ

6
Zǫrpqmrz

r ,

Bpq = −i
ζ

6
Zǫrpqmrz̄

r ,

Bpq̄ = i
ζ

6
Zǫrpq(mpz̄

r − mqz
r) ,

Bp̄q = i
ζ

6
Zǫrpq(mq z̄

r − mpz
r) ,

Bp̄q̄ = i
ζ

6
Zǫrpqmrz

r .

(A.1)

If the D7-brane is embedded as shown in table 1, the directions za, z̄a a = 2, 3 run along

its worldvolume, while zm, z̄m, m = 1 are perpendicular to it. The following expressions are

defined in the four flat parallel directions, and hence all inner products (denoted by ·) and

Hodge star operators (denoted by ⋆4) are understood to be the ones in the 4-dimensional

flat space spanned by za, z̄a, a = 2, 3.

With the definition of the sum of the squared masses in (2.12) the inner products in

four dimensions thus become

C̃2 · C̃2 = C̃abC̃āb̄ + C̃ab̄C̃āb = e−2φ̂ ζ2

18
Z2(M2zmz̄m + mamb(z

mzm + z̄mz̄m)) ,

B · B = BabBāb̄ + Bab̄Bāb =
ζ2

18
Z2(M2zmz̄m − mamb(z

mzm + z̄mz̄m))

(A.2)
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and

C̃2 · ⋆4C̃2 = −C̃abC̃āb̄ + C̃aāC̃bb̄ + C̃ab̄C̃āb

= − e−2φ̂ ζ2

18
Z2((m2

m − m2
a − m2

b)z
mz̄m − mamb(z

mzm + z̄mz̄m)) ,

B · ⋆4B = −BabBāb̄ + BaāBbb̄ + Bab̄Bāb

= − ζ2

18
Z2((m2

m − m2
a − m2

b)z
mz̄m + mamb(z

mzm + z̄mz̄m)) ,

(A.3)

where on the r.h.s. of the above expressions the indices a, b,m ∈ {1, 2, 3} take fixed distinct

values.

A combination that appears in the action (5.1) and in the equations of motion (5.5)

for the embedding coordinates is then determined as

1

2
Z−1

(

(α − β⋆4)B · B + τ e2φ̂ ⋆4C̃2 · C̃2

)

=
ζ2

36
Z

(

(α + β − τ)m2
m + (α − β + τ)(m2

a + m2
b))z

mz̄m

− (α − β − τ)mamb(z
mzm + z̄mz̄m)

)

,

(A.4)

where ⋆4 is understood to act on the first form on its right.

Furthermore, one needs similar expressions where not all components are summed.

They read

Z−1
(

(γ − δ⋆4)(BabBmb̄ + Bab̄Bmb) + τ e2φ̂ ⋆4(C̃abC̃mb̄ + C̃ab̄C̃mb)
)

= − ζ2

36
Z

(

((γ − δ + τ)m2
a + (γ + δ − τ)m2

m)z̄az̄m

− mb((γ + δ + τ)mmzaz̄m + (γ − δ − τ)maz̄
azm)

)

,

Z−1
(

(γ − δ⋆4)(BābBmb̄ + Bāb̄Bmb) + τ e2φ̂ ⋆4(C̃ābC̃mb̄ + C̃āb̄C̃mb)
)

= − ζ2

36
Z

(

2γmammz̄azm − (γ − δ − τ)mb(maz
azm + mmz̄az̄m)

+ (γ − δ + τ)m2
bz

az̄m
)

,

(A.5)

where on the l.h.s. one first has to act with ⋆4 on the first tensor on its right, and then

extract the required components. While on the l.h.s. a sum over b is understood and a,

m take fixed values, on the r.h.s. all indices a, b, m take the corresponding fixed distinct

values.

The tensors (2.11) for the corrected metric (2.10) read in complex coordinates

Ipq = − z̄pz̄q

10zz̄
, Ipq̄ =

1

5

(

δpq̄ −
z̄pzq

2zz̄

)

, (A.6)

and

Wpq =
1

4M2zz̄
(2δpq̄mpmrz̄

rz̄r − (m2
p + m2

q)z̄
pz̄q) +

z̄pz̄q

10zz̄
,

Wpq̄ =
1

20

(

δpq̄ − 3
z̄pzq

zz̄

)

+
1

4M2zz̄
((m2

p + m2
q)z̄

pzq − 2mpmqz
pz̄q) ,

(A.7)
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where we have introduced zz̄ = zpz̄p to abbreviate the expression summed over p. The

remaining components are obtained by complex conjugation from the above expressions.

Taking the traces of the corrections in (2.10) w.r.t. to the four-dimensional subspace, i.e.

summing over a = 2, 3, thereby using that in the complex basis (2.7) the radii defined

in (5.6) become

r =
√

2zz̄ =
√

ρ2 + u2 , ρ =
√

2zaz̄a , u =
√

2zmz̄m , (A.8)

we find

g̃aa =
1

10
(6p + 10q − w) +

u2

r2

1

10
(2p − 10q + 3w) . (A.9)

Using that according to (2.14) the trace over the first four directions is given by Zg̃µµ =

4h0Z = q − p, the required combination of traces becomes

Z− 1

2 (Zg̃µµ + g̃aa) =
1

10R2

(

ρ2(−4p + 20q − ω) + u2(−2p + 10q + 2ω)
)

. (A.10)

Furthermore, the required off-diagonal elements read

g̃am =
1

10zz̄
(5q − p + w)z̄az̄m − w

4M2zz̄
(m2

a + m2
m)z̄az̄m ,

g̃ām =
1

20zz̄
(10q − 2p − 3w)zaz̄m +

w

4M2zz̄
((m2

a + m2
m)zaz̄m − 2mammz̄azm) ,

(A.11)

where the missing combinations are obtained by complex conjugation.

B. Perturbative expansion of the equations of motion

In this section we derive the explicit form of the equations of motion (5.5) for the expanded

embedding coordinates (4.5). In the complex basis (2.7) the equations of motion (5.5) with

F = 0 are given by

2∂a∂ā ˜̄zm + ∂a

(

Z− 1

2 g̃mā

)

+ ∂ā

(

Z− 1

2 g̃ma

)

+ ∂a

(

Z−1
(

(γ − δ⋆4)(BābBmb̄ + Bāb̄Bmb) + τ e2φ̂((⋆4C̃)ābC̃mb̄ + (⋆4C̃)āb̄C̃mb)
))

+ ∂ā

(

Z−1
(

(γ − δ⋆4)(BabBmb̄ + Bab̄Bmb) + τ e2φ̂((⋆4C̃)abC̃mb̄ + (⋆4C̃)ab̄C̃mb)
))

=
∂

∂z̃m

(

φ̃ +
1

2
Z

1

2 g̃µµ +
1

2
Z− 1

2 g̃aa +
1

2
Z−1

(

(α − β⋆4)B · B + τ e2φ̂ ⋆4C̃2 · C̃2

)

)

∣

∣

∣

z̃m=˜̄zm=0

(B.1)

and by its complex conjugate. The individual expressions that enter the above equation

are given by the derivatives of the results computed in appendix A. From (A.4) we find

with the definition of ρ, u and r in (5.6) and in (A.8)

∂m

(

1

2
Z−1

(

(α − β⋆4)B · B + τ e2φ̂ ⋆4C̃2 · C̃2

)

)

=
ζ2

36
Z

(

(α + β − τ)m2
m + (α − β + τ)(m2

a + m2
b))

(

1 − 2
u2

r2

)

z̄m

− 2(α − β − τ)mamb

((

1 − u2

r2

)

zm − 2
(z̄m)3

r2

))

,

(B.2)
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where on the r.h.s. the indices a, b, and m take fixed distinct values. The divergence

of (A.5) reads

∂a

(

Z−1
(

(γ − δ⋆4)(BābBmb̄ + Bāb̄Bmb) + τ e2φ̂ ⋆4(C̃ābC̃mb̄ + C̃āb̄C̃mb)
))

+ (a ↔ ā)

=
ζ2

18
Z

(

−
(

((γ − δ + τ)(m2
a + m2

b) + (γ + δ − τ)m2
m)z̄m − 2(γ − δ − τ)mbmaz

m
)u2

r2

+
2

r2
mm

(

2γ(maz̄
az̄a + mbz̄

bz̄b)zm

− (mb((γ + δ + τ)zaza + (γ − δ − τ)z̄az̄a)

+ ma((γ + δ + τ)zbzb + (γ − δ − τ)z̄bz̄b))z̄m
)

)

,

(B.3)

where on the l.h.s. we have abbreviated the second term which is found from the first one

by exchanging the summation indices a and ā. While a and b are summed over on the

l.h.s., on the r.h.s. a, b, m take fixed distinct values. The gradient of the dilaton as given

in (2.15) becomes in complex coordinates

∂mφ̃ =
ζ2

18
Z

(

− 2

r2
(mambz̄

mz̄m + mamm(zbzb + z̄bz̄b) + mbmm(zaza + z̄az̄a))z̄m

+ mamb

(

1 − u2

r2

)

zm

)

,

(B.4)

where a, b, m take fixed distinct values. The derivative of the subtraces of the corrections

to the metric in (A.10) become

1

2
∂m

(

Z− 1

2 (Zg̃µµ + g̃aa)
)

=
1

5R2

(

3p − 15q + 2w − (2p − 10q + 3w)
u2

r2

)

z̄m . (B.5)

Finally, the derivatives of the off-diagonal elements of the corrections to the metric in (A.11)

are found to be given by

∂a(Z
− 1

2 g̃ām) + ∂ā(Z
− 1

2 g̃am)

=
1

5R2
(20q − 4p − ω)

u2

r2
z̄m +

4ω

M2R2r2
mm(maz̄

az̄a + mbz̄
bz̄b)zm .

(B.6)

While a is a summation index on the l.h.s., a, b and m take fixed distinct values on the
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r.h.s. Inserting the above equations into (B.1), we obtain

2∂a∂ā ˜̄zm = − 2

r2

(

ζ2

9
Zγ +

2ω

M2R2

)

mm(maz̄
az̄a + mbz̄

bz̄b)zm

+
ζ2

36
Z

(

4

r2
mm

(

mb((γ + δ + τ − 1)zaza + (γ − δ − τ − 1)z̄az̄a)

+ ma((γ + δ + τ − 1)zbzb + (γ − δ − τ − 1)z̄bz̄b)
)

z̄m

+ m2
m

(

α + β − τ − 2(α + β − γ − δ)
u2

r2

)

z̄m

+ (m2
a + m2

b)

(

α − β + τ − 2(α − β − γ + δ)
u2

r2

)

z̄m

− 2mamb

((

α − β − τ − 1 − (α − β − 2(γ − δ) + τ − 1)
u2

r2

)

zm

− 2(α − β − τ − 1)
(z̄m)3

r2

))

+
1

5R2

(

3p − 15q + 2ω + (2p − 10q − 2ω)
u2

r2

)

z̄m ,

(B.7)

where on the l.h.s. a is a summation index. On the r.h.s. a, b and m take fixed dis-

tinct values, and the expressions have to be evaluated using the unperturbed embedding

coordinates ẑm and ˆ̄zm as required by (B.1).

We use the explicit values for p, q and ω given in (2.13) to compute the combinations

3p − 15q + 2ω = −5ζ2

27
M2R2Z , 2p − 10q − 2ω =

5ζ2

81
M2R2Z . (B.8)

They are used to obtain the result

2∂a∂ā ˜̄zm =
ζ2

36
Ẑ

(

4

r̂2
mm

(

2(1 − γ)(maz̄
az̄a + mbz̄

bz̄b)ẑm

+ (mb((γ + δ + τ − 1)zaza + (γ − δ − τ − 1)z̄az̄a)

+ ma((γ + δ + τ − 1)zbzb + (γ − δ − τ − 1)z̄bz̄b))ˆ̄zm
)

+ m2
m

(

α + β − τ − 4

3
− 2

(

α + β − γ − δ − 2

9

)

û2

r̂2

)

ˆ̄zm

+ (m2
a + m2

b)

(

α − β + τ − 4

3
− 2

(

α − β − γ + δ − 2

9

)

û2

r̂2

)

ˆ̄zm

− 2mamb

((

α − β − τ − 1 − (α − β − 2(γ − δ) + τ − 1)
û2

r̂2

)

ẑm

− 2(α − β − τ − 1)
(ˆ̄zm)3

r̂2

))

,

(B.9)

where the quantities that carry a ‘hat’ are related to or respectively evaluated with the un-

perturbed part of the embedding. Multiplying both sides with ẑm, adding and subtracting

– 28 –



J
H
E
P
0
8
(
2
0
0
7
)
0
3
1

the complex conjugate of the result, and making use of the decomposition

fφ + gφ̄ =
f + g

2
(φ + φ̄) +

f − g

2
(φ − φ̄) , (B.10)

valid for arbitrary f , g and φ, we obtain the two equations

2(ẑm∂a∂ā ˜̄zm + ˆ̄zm∂a∂āz̃
m)

=
ζ2

36
Ẑû2

(

2

r̂2
(1 − γ)mm

(

(ma(z
aza + z̄az̄a) + mb(z

bzb + z̄bz̄b))

(

ẑm

ˆ̄zm
+

ˆ̄zm

ẑm

)

− (ma(z
aza − z̄az̄a) + mb(z

bzb − z̄bz̄b))

(

ẑm

ˆ̄zm
−

ˆ̄zm

ẑm

)

− 2(mb(z
aza + z̄az̄a) + ma(z

bzb + z̄bz̄b))

)

+ m2
m

(

α + β − τ − 4

3
− 2

(

α + β − γ − δ − 2

9

)

û2

r̂2

)

+ (m2
a + m2

b)

(

α − β + τ − 4

3
− 2

(

α − β − γ + δ − 2

9

)

û2

r̂2

)

− mamb

(

α − β − τ − 1 − 2(α − β − γ + δ − 1)
û2

r̂2

)(

ẑm

ˆ̄zm
+

ˆ̄zm

ẑm

))

(B.11)

and

2(ẑm∂a∂ā ˜̄zm − ˆ̄zm∂a∂āz̃
m)

=
ζ2

36
Ẑû2

(

2

r̂2
mm

(

(1 − γ)

(

(ma(z
aza + z̄az̄a) + mb(z

bzb + z̄bz̄b))

(

ẑm

ˆ̄zm
−

ˆ̄zm

ẑm

)

− (ma(z
aza − z̄az̄a) + mb(z

bzb − z̄bz̄b))

(

ẑm

ˆ̄zm
+

ˆ̄zm

ẑm

))

+ 2(δ + τ)(mb(z
aza − z̄az̄a) + ma(z

bzb − z̄bz̄b))

)

− mamb

(

α − β − τ − 1 + 2(γ − δ − τ)
û2

r̂2

)(

ẑm

ˆ̄zm
−

ˆ̄zm

ẑm

))

.

(B.12)

The linear combinations that appear in the above expressions on the l.h.s. are directly

related to the radial and angular coordinate in a polar coordinate system. Expanding the

embedding coordinates in the complex basis up to linear order in the corrections ũ and ψ̃

as √
2zm = u eiψ = (û + ũ) ei(ψ̂+ψ̃) = (û + ũ + iûψ̃) eiψ̂ ,

√
2z̄m = u e−iψ = (û + ũ) e−i(ψ̂+ψ̃) = (û + ũ − iûψ̃) e−iψ̂ ,

(B.13)

we find that the required linear combinations are given by

ẑm∂a∂ā ˜̄zm + ˆ̄zm∂a∂āz̃
m = û∂a∂āũ ,

ẑm∂a∂ā ˜̄zm − ˆ̄zm∂a∂āz̃
m = −iû2∂a∂āψ̃ .

(B.14)

Furthermore, with û2 = 2ẑm ˆ̄zm, ẑm

ˆ̄zm = e2iψ̂ the combinations that appear on the r.h.s.

of (B.11) and (B.12) can be expressed in terms of the angle ψ̂ as

ẑm

ˆ̄zm
+

ˆ̄zm

ẑm
= 2cos 2ψ̂ ,

ẑm

ˆ̄zm
−

ˆ̄zm

ẑm
= 2i sin 2ψ̂ . (B.15)

– 29 –



J
H
E
P
0
8
(
2
0
0
7
)
0
3
1

The combinations of the coordinates za and z̄a are abbreviated in terms of four of the

in total nine l = 2 SO(4) spherical harmonics which are defined as

y++ =
zaza + zbzb + z̄az̄a + z̄bz̄b

ρ2
=

y5y5 + y6y6 − y8y8 − y9y9

ρ2
,

y+− = −i
zaza + zbzb − z̄az̄a − z̄bz̄b

ρ2
= 2

y5y8 + y6y9

ρ2
,

y−+ =
zaza − zbzb + z̄az̄a − z̄bz̄b

ρ2
=

y5y5 − y6y6 − y8y8 + y9y9

ρ2
,

y−− = −i
zaza − zbzb − z̄az̄a + z̄bz̄b

ρ2
= 2

y5y8 − y6y9

ρ2
,

(B.16)

where in the second equalities we have fixed the indices to a = 2, b = 3 and m = 1. This

corresponds to an embedding of the D7-brane as shown in table 1. Using the following

parameterization of the real coordinates

y5 = ρ cos θ cos φ1 , y6 = ρ cos θ sin φ1 , y8 = ρ sin θ cos φ2 , y9 = ρ sin θ sin φ2 ,

(B.17)

where 0 ≤ θ ≤ π
2 and 0 ≤ φ1,2 ≤ 2π, the spherical harmonics become

y++ = cos 2θ ,

y+− = sin 2θ cos(φ1 − φ2) ,

y−+ = cos2 θ cos 2φ1 − sin2 θ cos 2φ2 ,

y−− = sin 2θ cos(φ1 + φ2) .

(B.18)

The equations of motion then read

2∂a∂āũ =
ζ2

36
Ẑû

(

2
ρ2

r̂2
(1 − γ)m1

(

− (m2 + m3)y++(1 − cos 2ψ̂)

+ (m2 − m3)y−+(1 + cos 2ψ̂)

+ ((m2 + m3)y+− + (m2 − m3)y−−) sin 2ψ̂
)

+ m2
1

(

α + β − τ − 4

3
− 2

(

α + β − γ − δ − 2

9

)

û2

r̂2

)

+ (m2
2 + m2

3)

(

α − β + τ − 4

3
− 2

(

α − β − γ + δ − 2

9

)

û2

r̂2

)

− 2m2m3

(

α − β − τ − 1 − 2(α − β − γ + δ − 1)
û2

r̂2

)

cos 2ψ̂

)

2∂a∂āψ̃ =
ζ2

36
Ẑ

(

2
ρ2

r̂2
m1

(

(γ − 1)((m2 + m3)y++ + (m2 − m3)y−+) sin 2ψ̂

− (m2 + m3)y+−(δ + τ + (γ − 1) cos 2ψ̂)

+ (m2 − m3)y−−(δ + τ − (γ − 1) cos 2ψ̂)

)

+ 2m2m3

(

α − β − τ − 1 + 2(γ − δ − τ)
û2

r̂2

)

sin 2ψ̂

)

.

(B.19)
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For both, u and ψ they have the same structure which is compactly summarized as

2∂a∂āf =
nf

r̂4

(

Bf + Cf
û2

r̂2
− (C++

f y++ + C+−
f y+− + C−+

f y−+ + C−−
f y−−)

ρ2

r̂2

)

,

(B.20)

where f = u or f = ψ, nu = û or respectively nψ = 1, and the constants are given by

Bu =
ζ2R4

216

(

(m2 + m3)
2(6τ − 1) + (m2 − m3)

2(6(α − β) − 7)

+ 2m2
1(3(α + β − τ) − 4) + 12m2m3(α − β − τ − 1)(1 − cos 2ψ̂)

)

,

Cu = −ζ2R4

108

(

(m2 + m3)
2 7

3
+ (m2 − m3)

2

(

6(α − β − γ + δ) − 11

3

)

+ 2m2
1

(

3(α + β − γ − δ) − 2

3

)

+ 12m2m3(α − β − γ + δ − 1)(1 − cos 2ψ̂)

)

,

C++
u = −ζ2R4

18
m1(m2 + m3)(γ − 1)(1 − cos 2ψ̂) ,

C+−
u =

ζ2R4

18
m1(m2 + m3)(γ − 1) sin 2ψ̂ ,

C−+
u =

ζ2R4

18
m1(m2 − m3)(γ − 1)(1 + cos 2ψ̂) ,

C−−
u =

ζ2R4

18
m1(m2 − m3)(γ − 1) sin 2ψ̂ ,

(B.21)

or respectively by

Bψ =
ζ2R4

18
m2m3(α − β − τ − 1) sin 2ψ̂ ,

Cψ =
ζ2R4

9
m2m3(γ − δ − τ) sin 2ψ̂ ,

C++
ψ = −ζ2R4

18
m1(m2 + m3)(γ − 1) sin 2ψ̂ ,

C+−
ψ =

ζ2R4

18
m1(m2 + m3)(γ + δ + τ − 1 − (γ − 1)(1 − cos 2ψ̂)) ,

C−+
ψ = −ζ2R4

18
m1(m2 − m3)(γ − 1) sin 2ψ̂ ,

C−−
ψ =

ζ2R4

18
m1(m2 − m3)(γ − δ − τ − 1 − (γ − 1)(1 − cos 2ψ̂)) .

(B.22)

C. Explicit expansion of the action

In this section we derive the explicit expression for the action (5.1). We need the cor-

rections to the dilaton (2.15) in complex coordinates, as well as the combination of the

subtraces (A.10) of the corrections to the metric. Furthermore, we need the form com-

bination (A.4). The components of the correction to the metric (A.11) and of the form
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combination (A.5) have to be contracted with the derivatives of the embedding coordinates.

Finally, (2.13) serves to replace the parameters in the metric by their explicit values.

The combination of non-derivative terms is then found to be given by

φ̃ +
1

2
Z− 1

2 (Zg̃µµ + g̃aa) +
1

2
e−φ̂ Z−1(α − β⋆4)B · B +

τ

2
eφ̂ Z−1 ⋆4 C̃2 · C̃2

=
ζ2

36
Z

(

− (α − β − τ − 1)mamb(z
mzm + z̄mz̄m)

+ mamm(zbzb + z̄bz̄b) + mbmm(zaza + z̄az̄a) +
5

18
M2ρ2

+
1

18
((9(α + β − τ) − 2)m2

m + (9(α − β + τ) − 2)(m2
a + m2

b))u
2

)

.

(C.1)

While on the l.h.s. the indices µ, a are summed over, on the r.h.s. a, b, m take fixed

distinct values. After some manipulations thereby using also (B.10) to obtain simple linear

combinations of the derivative terms, the remaining contributions to the action combine as

Z− 1

2 ∂aỹ
mg̃am + 2e−φ̂ Z−1

(

(γ − δ⋆4)B · ∂ỹB + τ e2φ̂ ⋆4C̃2 · ∂ỹC̃2

)

= − ζ2

72
Z

(((

γ − δ + τ − 5

9

)

(m2
a + m2

b) +

(

γ + δ − τ − 5

9

)

m2
m

)

(za∂a + z̄a∂ā)(ẑ
m ˜̄zm + ˆ̄zmz̃m)

+ ((γ − δ + τ − 1)(m2
a − m2

b) + (γ + δ − τ − 1)m2
m)

(za∂a − z̄a∂ā)(ẑ
m ˜̄zm − ˆ̄zmz̃m)

− 2(γ − δ − τ)mamb(z
a∂a + z̄a∂ā)(ẑ

mz̃m + ˆ̄zm ˜̄zm)

− 2mmmb(γ(za∂ā + z̄a∂a)(ẑ
m ˜̄zm + ˆ̄zmz̃m)

− (δ + τ)(za∂ā − z̄a∂a)(ẑ
m ˜̄zm − ˆ̄zmz̃m))

+ 4(γ − 1)mamm(za∂ā(ˆ̄z
m ˜̄zm) + z̄a∂a(ẑ

mz̃m))

)

,

(C.2)

where on the l.h.s. for compactness we have used real coordinates and all indices are

summed over independently, while on the r.h.s. which is expressed in complex coordinates

the summation runs over a and b, such that a, b and m take distinct values.

To obtain the action as an expansion in terms of the corrections which appear in the

decomposition (4.5), we have to expand the warp factor up to linear order in z̃m as

Z = Ẑ

(

1 − 4

r̂2
(ẑm ˜̄zm + ˆ̄zmz̃m)

)

, Ẑ =
R4

r̂4
, (C.3)

where a ‘hat’ indicates that the corresponding expression has to be evaluated with the

unperturbed value ẑm. Introducing polar coordinates as in (B.13) and embedding the
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D7-brane as in table 1, the Lagrangian is then given by

− eφ̂

T7

L = 1 + ∂aũ∂āũ + û2∂aψ̃∂āψ̃

+
ζ2

72
Ẑ

„

`

(m2 − m3)2(α − β − 1) + (m2 + m3)2τ
´

û

„

û + 2

„

1 − 2
û2

r̂2

«

ũ

«

− ((m2 − m3)2(γ − δ) + (m2 + m3)2τ)(za∂a + z̄a∂ā)ûũ

+
1

3
(m2

2 + m2
3)

„

2

3
û2 +

5

3
r̂2 − 2

„

1 +
4

3

û2

r̂2

«

ûũ +
5

3
(za∂a + z̄a∂ā)ûũ

«

+ m2
1

„„

α + β − τ − 7

9

«

û2 +
5

9
r̂2 + 2

„

α + β − τ − 4

3
− 2

„

α + β − τ − 7

9

«

û2

r̂2

«

ûũ

−
„

γ + δ − τ − 5

9

«

(za∂a + z̄a∂ā)ûũ

«

+ i((m2
2 − m2

3)(γ − δ + τ − 1)(z2∂2 − z̄2∂2̄ − z3∂3 + z̄3∂3̄)

+ m2
1(γ + δ − τ − 1)(za∂a − z̄a∂ā))û2ψ̃

+ 2m2m3

„

(α − β − τ − 1)û

„

û(1 − cos 2ψ̂) + 2

„

1 − 2
û2

r̂2

«

(1 − cos 2ψ̂)ũ + 2û sin 2ψ̂ ψ̃

«

− (γ − δ − τ)(za∂a + z̄a∂ā)û((1 − cos 2ψ̂)ũ + û sin 2ψ̂ ψ̃)

«

+ m1(m2 + m3)

„

(r̂2 − û2)y++

„

1 − 4

r̂2
ûũ

«

+ û(za∂ā + z̄a∂a)(ũ + (γ − 1)((1 − cos 2ψ̂)ũ + û sin 2ψ̂ ψ̃))

+ iû(za∂ā − z̄a∂a)((γ + δ + τ − 1)ûψ̃ + (γ − 1)(sin 2ψ̂ ũ − (1 − cos 2ψ̂)ûψ̃))

«

− m1(m2 − m3)

„

(r̂2 − û2)y−+

„

1 − 4

r̂2
ûũ

«

+ û(z2∂2̄ + z̄2∂2−z3∂3̄−z̄3∂3)((2γ − 1)ũ−(γ − 1)((1−cos 2ψ̂)ũ+û sin 2ψ̂ψ̃))

− iû(z2∂2̄ − z̄2∂2 − z3∂3̄ + z̄3∂3)((γ − δ − τ − 1)ûψ̃

+ (γ − 1)(sin 2ψ̂ ũ − (1 − cos 2ψ̂)ûψ̃)

««

,

(C.4)

where a summation over a = 2, 3 on both sides is understood. Finally, we partially integrate

all terms which contain derivatives of ũ and ψ̃. We require the expressions

(∂az
a + ∂āz̄

a)Ẑ = 4Ẑ
û2

r̂2
,

− i

2
(∂az

a − ∂āz̄
a)Ẑ = 0 ,

(∂āz
a + ∂az̄

a)Ẑ = −4Ẑ
ρ2

r̂2
y++ ,

−i(∂āz
a − ∂az̄

a)Ẑ = −4Ẑ
ρ2

r̂2
y+− ,

(C.5)

and

(∂2̄z
2 − ∂3̄z

3 + ∂2z̄
2 − ∂3z̄

3)Ẑ = −4Ẑ
ρ2

r̂2
y−+ ,

−i(∂2̄z
2 − ∂3̄z

3 − ∂2z̄
2 + ∂3z̄

3)Ẑ = −4Ẑ
ρ2

r̂2
y−− ,

(C.6)

where the derivatives act on all functions on the right, and the SO(4) spherical harmonics

that appear on the r.h.s. are defined in (B.16). The Lagrangian can then be cast into the
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compact form

− eφ̂

T7
L = 1 + ∂aũ∂āũ + û2∂aψ̃∂āψ̃ +

Bu

2

û2

r̂4

+
ζ2

216
Ẑ

(

5

3
M2(r̂2 + û2) + 3m1((m2 + m3)y++ − (m2 − m3)y−+)ρ2

)

+

(

Bu + Cu
û2

r̂2
− (C++

u y++ + C+−
u y+− + C−+

u y−+ + C−−
u y−−)

ρ2

r̂2

)

û

r̂4
ũ

+

(

Bψ + Cψ
û2

r̂2
− (C++

ψ y++ + C+−
ψ y+− + C−+

ψ y−+ + C−−
ψ y−−)

ρ2

r̂2

)

û2

r̂4
ψ̃

+ total derivatives ,

(C.7)

where M2 can be found in (2.12), and the constants are defined in (B.21) and (B.22). It

is easy to verify that the equations of motion derived from this Lagrangian coincide with

the ones given in (5.8) and (B.19).

D. Analytic solution of the equations of motion

The equations of motion (5.8) and (B.19) have the structure

2∂a∂āf =
nf

r̂4

(

Bf + Cf
û2

r̂2
− CI

fyI
ρ2

r̂2

)

=
nf

r̂4

(

Bf + Cf − (Cf + CI
fyI)

ρ2

r̂2

)

, (D.1)

where nu = û, nψ = 1, and we sum over I which distinguishes the level l = 2 SO(4)

spherical harmonics defined in (B.16).

To find a solution of the above equation, we recall the action of the Laplace operator

in d-dimensional flat space when it acts on a function f(ρ, θi) = f I(ρ)YI(θi), i = 1, . . . , d−
1, where ρ is the radial coordinate and θi denote the angle coordinates. The spherical

harmonics YI (representations of SO(d)) carry labels I = (l,m1 . . . md−2), including also

the case l = 0. The Laplace operator acts as

∂a∂af =
∑

I

(

1

ρd−1
∂ρ(ρ

d−1∂ρ) −
l(l + d − 2)

ρ2

)

f IYI , (D.2)

where on the l.h.s. we sum over a = 1, . . . , d. We separate from the radial dependent

coefficients of the level l spherical harmonics a factor ρl by rewriting f I = ρlhI
f . This

yields the relation
(

1

ρd−1
∂ρ(ρ

d−1∂ρ) −
l(l + d − 2)

ρ2

)

f I =
1

ρl+d−1
∂ρ

(

ρ2l+d−1∂ρh
I
f

)

, (D.3)

i.e. rewritten in terms of the functions hI
f , the Laplace operator only generates first and

second derivative of hI
f in a nested manner, but does not leave the hI

f without derivatives.

Using this transformation in the special case of d = 4, the equations of motion (D.1)

are rewritten as
1

ρl+3
∂ρ

(

ρ2l+3∂ρh
I
f

)

=
nf

r̂4

(

BI
f + CI

f − CI
f

ρ2

r̂2

)

. (D.4)
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We have split it into individual equations for each value of I. For the coefficients hf (ρ)

of the constant spherical harmonic (l = 0) and for hl=2
f (ρ) for the level l = 2 spherical

harmonics we respectively find

1

ρ3
∂ρ(ρ

3∂ρhf ) =
nf

r̂4

(

Bf + Cf − Cf
ρ2

r̂2

)

,

1

ρ5
∂ρ(ρ

7∂ρh
l=2
f ) = −nfC l=2

f

ρ2

r̂6
.

(D.5)

Performing the first step of integration, the results read

ρ3∂ρhf =
nf

2

(

(Bf − Cf )
û2

r̂2
+ Bf ln r̂2 + Cf

û4

2r̂4
− 2Af

)

,

ρ7∂ρh
l=2
f = −nf

2

(

C l=2
f

(

ρ2 − 3
û4

r̂2
+

û6

2r̂4
− 3û2 ln r̂2

)

+ 6Al=2
f û2

)

,

(D.6)

where Af and Al=2
f denote integration constants. After the second integration we obtain

hf = ĥf − nf

2

(

(2Bf − Cf )
1

4ρ2
+ Bf

1

2ρ2
ln r̂2 + Cf

1

4r̂2
− Af

1

ρ2

)

,

hl=2
f = ĥl=2

f +
nf

2ρ2

(

C l=2
f

(

1

2ρ2

(

1 − û2

ρ2
ln r̂2

)

− 5

12

û2

ρ4
− 1

4r̂2

)

+ Al=2
f

û2

ρ4

)

,

(D.7)

where ĥf and ĥl=2
f are the corresponding integration constants. In general the above given

functions diverge in the limit ρ → 0. However, for appropriately chosen constants

Af =
1

2
Bf (1 + ln û2) − 1

4
Cf , Al=2

f =
1

12
C l=2

f (5 + 6 ln û2) , (D.8)

the functions become regular at ρ = 0, i.e. the D7-brane embeddings are regular at ρ = 0

in this case. The coefficient functions assume the form

hf = ĥf − nf

8

(

Bf
2

ρ2
ln

r̂2

û2
+ Cf

1

r̂2

)

,

hl=2
f = ĥl=2

f +
nf

8ρ2
C l=2

f

(

2

ρ2

(

1 − û2

ρ2
ln

r̂2

û2

)

− 1

r̂2

)

.

(D.9)

In the full solution hl=2
f is multiplied by ρ2. For ρ → ∞ it is therefore only regular if

ĥl=2
f = 0. The everywhere regular solution of (D.1) hence depends on a single integration

constant f̂ = ĥf . Its final form and its first and second derivative are given by

f = f̂ − nf

8

(

Bf
2

ρ2
ln

r̂2

û2
+ Cf

1

r̂2
− CI

f

(

2

ρ2

(

1 − û2

ρ2
ln

r̂2

û2

)

− 1

r̂2

)

yI

)

,

∂ρf =
nf

4

(

Bf
2

ρ

(

1

ρ2
ln

r̂2

û2
− 1

r̂2

)

+ Cf
ρ

r̂4
− CI

f

(

2

ρ3

(

1 − 2
û2

ρ2
ln

r̂2

û2
+

û2

r̂2

)

− ρ

r̂4

)

yI

)

,

∂2
ρf =

nf

4

(

Bf
2

ρ2

(

− 3

ρ2
ln

r̂2

û2
+

3

r̂2
+ 2

ρ2

r̂4

)

+ Cf
1

r̂4

(

1 − 4
ρ2

r2

)

− CI
f

(

− 20

ρ4

(

1 − û2

ρ2
ln

r̂2

û2

)

+
1

ρ2r̂2

(

10 + 3
ρ2

r̂2

)

+ 4
ρ2

r̂6

))

yI

)

.

(D.10)
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For a closer analysis it is necessary to understand the asymptotic behaviour of the above

expressions. In the limits ρ ≪ û and ρ ≫ û we find

f =

{

f̂ − nf

8û2 (2Bf + Cf ) ρ → 0

f̂ − nf

8ρ2

(

2Bf ln ρ2

û2 + Cf − CI
fyI

)

ρ → ∞
,

∂ρf =

{

0 ρ → 0
nf

4ρ3

(

2Bf (ln ρ2

û2 − 1) + Cf − CI
f yI

)

ρ → ∞
,

∂2
ρf =

{

nf

12û2 (3(Bf + Cf ) + CI
f yI) ρ → 0

nf

4ρ4 (2Bf (−3 ln ρ2

û2 + 5) − 3Cf + 3CI
f yI) ρ → ∞

.

(D.11)

In particular, f̂ is the constant value of f at the boundary at ρ → ∞.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[2] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131].

[3] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades

and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191].

[4] N.R. Constable and R.C. Myers, Exotic scalar states in the AdS/CFT correspondence, JHEP

11 (1999) 020 [hep-th/9905081].
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[10] R. Apreda, J. Erdmenger, D. Lüst and C. Sieg, Adding flavour to the Polchinski-Strassler

background, JHEP 01 (2007) 079 [hep-th/0610276].

[11] D.Z. Freedman and J.A. Minahan, Finite temperature effects in the supergravity dual of the

N = 1∗ gauge theory, JHEP 01 (2001) 036 [hep-th/0007250].

[12] G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, Gaugino condensation and
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